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Synchronization of chaos due to linear response in optically driven semiconductor lasers

Atsushi Murakami
Department of Electronic Engineering, The University of Electro-Communications, 1-5-1 Chofu-gaoka, Chofu-shi, Tokyo 182-8585
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This paper presents physical aspects on chaos synchronization in semiconductor lasers~SLs! by studying
synchronization from a fundamental standpoint ofdriven damped oscillators. We investigate the simple con-
figuration, a chaotic master SL with optical feedback and a solitary slave SL. The point we emphasize is that
the slave laser is regarded as a damped oscillator with relaxation oscillation. Linear stability analysis demon-
strates that strong injection can enhance the damping of the slave SL. Consequently, the slave SL can have
broad and nearly flat spectral characteristics in its driven response, which is sufficient for covering the broad-
band chaotic driving signal from the master SL. Numerical simulations verify that the slave SL subject to such
strong injection synchronizes well with the chaotic driving signal. We consider that the synchronization phe-
nomenon results from a quasilinear driven response of the slave SL with the remarkable spectral characteris-
tics. Moreover, we discuss this type of chaos synchronization in comparison to anticipating-chaos synchroni-
zation occurring in our case from conventional complete synchronization theories, and clarify the different
physical aspects of the chaos synchronization scheme. We also show that our analysis agrees well with the
earlier experiments that could not have been explained by complete synchronization theory.

DOI: 10.1103/PhysRevE.65.056617 PACS number~s!: 05.45.Xt, 42.55.Px, 42.65.Sf
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I. INTRODUCTION

Investigating nonlinear systems driven by a time-vary
input has been of interest and is related to problems in a w
area of natural and science fields, from chemical, biologi
and physiological, to physical systems. In particular, s
chronization is an attractive phenomenon in driven nonlin
systems both from a fundamental and an application poin
view. Recently, synchronization of nonlinear systems driv
with chaotic signals, not by periodic signals, has been a
cinating subject. Several concepts for synchronizing ch
have been suggested, such as complete synchroniz
@1–3#, generalized synchronization@4,5#, phase synchroniza
tion @6#, and lag synchronization@7#, and chaos synchroniza
tion has been intensively studied in many systems. In p
ticular, lasers have been of great interest due to th
potential applications to optical secure communications
which information is conveyed by a chaotic carrier@8–11#.

Synchronization of chaotic oscillations in lasers can
easily realized using a simple configuration, consisting o
chaotic master laser and a solitary slave laser coupled
injecting the master laser output into the slave laser. T
configuration has been numerically studied in several la
systems, and the synchronized chaos has been well discu
from the standpoint of the conventional comple
synchronization theory@12–15#. The experiment in such a
configuration was performed in microchip lasers@16# and
semiconductor lasers@17,18#, and good synchronization in
laser outputs was observed. However, the earlier nume
studies could not explain the observed chaos synchroniza
very well. There exist some problems in the experimen
synchronization, as follows:~i! increasing injection strength
realizes much more accurate synchronization@16#; ~ii ! syn-
chronized chaotic oscillation can be observed even in
presence of large frequency detuning between the two la
@17,18#. All the authors conclude that the experimentally o
served synchronization results from amplification pheno
1063-651X/2002/65~5!/056617~8!/$20.00 65 0566
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ena caused by injection locking in lasers. Moreover, th
experimental results verify that synchronization of chao
outputs in lasers can be easily obtained in asymmetric
mismatched systems, which contradicts the comple
synchronization theories requiring identical or symmet
systems to realize synchronization. Recently, we numeric
demonstrated chaos synchronization induced by amplifi
tion at a much higher injection level than that previous
reported and revealed that the chaos synchronization re
from the injection-locking phenomena, which agrees w
with the experiments in some aspects@19#. However, there is
yet no conclusive explanation of the physics involve
namely, how injection locking can induce such synchroni
tion by amplification.

In this paper, we reconsider the problem from a fund
mental standpoint far from the conventional chaos synch
nization theories. Since general lasers can be regarde
damped nonlinear oscillators exhibiting damping oscillatio
also called ‘‘relaxation oscillation,’’ that is a result of a
interaction between the complex electric field and the po
lation inversion in the laser cavity. Therefore, we can d
with a case of injecting a master’s chaotic output into a s
tary slave laser as a fundamental problem of ‘‘driving
damped oscillators.’’

A remarkable feature of driving damped oscillators
resonance. If a damped oscillator is driven by a period
signal very close to the oscillator damping frequency,
oscillator will begin to oscillate at the same frequency as
driving signal but with large amplitude. In contrast, if th
driving frequency is far from the damping frequency, t
response of the oscillator becomes much smaller comp
to the case of resonance. Thus, the oscillator resona
causes a kind of filtering effect. We then consider drivi
damped oscillators with chaotic signal in the same man
Because of the broad bandwidth of chaotic signals, the re
nance may force damped oscillators to respond by enhan
specific frequency components of a chaotic signal. Howe
©2002 The American Physical Society17-1
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ATSUSHI MURAKAMI PHYSICAL REVIEW E 65 056617
we can also consider that a damped oscillator could sync
nize with the chaotic driving signal, if the oscillator cou
respond linearly to the chaotic drive. ‘‘Linear respons
means that the damped oscillator has a broad bandwidth
sufficiently covers the bandwidth of the chaotic driving s
nal, has a response even faster than the chaotic time v
tions, and has an identical gain over the dominant freque
range in the chaotic signal. Such linear-response-indu
chaos synchronization may differ considerably from co
plete synchronization theories.

In this paper, we choose semiconductor lasers and ana
cally investigate rate equations by performing a linear sta
ity analysis in order to study chaos synchronization in las
In particular, we reveal important physical aspects beh
synchronization of chaotic oscillations in lasers by taking
standpoint of driven damped oscillators and verify that o
analysis can provide a better interpretation of the earlier
periments.

II. MODEL AND RATE EQUATIONS

We consider chaotically driving semiconductor lasers
the simple master-slave configuration depicted in Fig.
which is basically the same as the configuration used in
earlier experiments@16–18#. The master laser has an exte
nal reflector and exhibits feedback-induced chaotic instab
ties. We note that using feedback-induced chaos as a dri
signal is very useful for distinguishing the linear-respon
induced synchronization~we call this ‘‘linear-amplification-
like synchronization’’ in the following! from the complete
synchronization, discussed later. In order to drive the sl
laser, the master chaotic output is unidirectionally injec
into the active layer of the slave laser via an optical isola
~IS!. Fundamental dynamics, instability, and synchronizat
in the coupled semiconductor lasers can be described by
following set of rate equations@12–15,19#:

dEm~ t !

dt
5

1

2
~11 ia!$g@Nm~ t !2N0#2gc%Em~ t !

1kextEm~ t2t!, ~1!

dEs~ t !

dt
5

1

2
~11 ia!$g@Ns~ t !2N0#2gc%Es~ t !1k injEm~ t !,

~2!

dNm,s~ t !

dt
5

I m,s

e
2gNNm,s~ t !2g@Nm,s~ t !2N0#uEm,s~ t !u2,

~3!

FIG. 1. Configuration of synchronizing coupled semiconduc
lasers~SLs!. The master SL receives optical feedback from an
ternal reflector and emits feedback-induced chaotic light. The s
SL is driven by unidirectionally injecting the master’s chaotic lig
into the slave’s active layer via an optical isolator~IS!.
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whereE andN are the slowly varying complex electric fiel
amplitude and carrier number in the laser cavity, resp
tively, and the subscriptsm ands represent master and slav
lasers. Note that the master and slave lasers are assum
emit at the same optical frequency, namely, no freque
detuning exists between the two lasers. The laser inte
parameters are as follows:a53 is the linewidth enhance
ment factor,g57.031026 ns21 is the linear gain coeffi-
cient, gc5518.9 ns21 is the cavity decay rate,gN
50.490 ns21 is the spontaneous carrier decay rate,I is the
pump current,e is the electron charge, andN051.683108 is
the carrier number at transparency.t is the round-trip delay
time within the external cavity. Feedback coefficientkext is
given by 1/t in(12r 0)Ar ext/r 0 where t in is the round-trip
time in the laser cavity, andr 0 and r ext represent intensity
reflectivity of the laser exit facet and the external reflec
(r 050.3). The coupling strength between the two syste
can be given by an injection coefficientk inj expressed as
1/t in(12r 0)Ar inj /r 0 in which r inj represents the injection
rate of the master output intensity injected into the sla
laser cavity.

We show a typical feedback-induced chaos genera
from the master laser in Fig. 2. It results from numerica
calculating Eqs.~1! and ~3! for variable parameters of th
injection current I m51.3I th , the feedback delay timet
51 ns, and the feedback rater ext50.02% (kext53.2 ns21)
by using a fourth-order Runge-Kutta algorithm. These fi
ures present~a! the chaotic time series and~b! its power
spectrum. The feedback-induced chaos has a dominant
quency in the gigahertz range corresponding to the relaxa
oscillation frequency. Nonlinear mixing between the rela
ation oscillation frequency and the external round-trip f
quency induced by the external feedback causes a varie
irregularities. The spectrum has a maximum peak around
relaxation oscillation frequency and exhibits broadband ch
acteristics exceeding 10 GHz. We inject this chaotic lig
into the slave laser in order to realize a chaotic drive.
described in the preceding section, the slave laser must

r
-
ve

FIG. 2. Typical feedback-induced chaos generated from
master SL.~a! Time series and~b! power spectrum of the maste
output for the parameters ofI m51.3I th , t51 ns, r ext50.02%.
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SYNCHRONIZATION OF CHAOS DUE TO LINEAR . . . PHYSICAL REVIEW E 65 056617
ficiently cover the bandwidth of the chaotic signal to obtain
linear driven response and the resultant synchronization
the following section, we perform a linear stability analys
for rate equations and analytically investigate the bandw
of optically driven semiconductor lasers.

III. LINEAR STABILITY ANALYSIS

We start by presenting rate equations for optically driv
semiconductor lasers as a model of the slave laser,

dE~ t !

dt
5

1

2
~11 ia!$g@N~ t !2N0#2gc%E~ t !1kEdrv~ t !,

~4!

dN~ t !

dt
5

I

e
2gNN~ t !2g@N~ t !2N0#uE~ t !u2, ~5!

whereEdrv represents the driving optical field amplitude a
k has the same form ofk inj . In Eq. ~4!, the complex electric
field can be divided into amplitude and phase terms ass
ing E(t)5A(t)exp@if(t)#. Here, the driving fieldEdrv is as-
sumed to be emitted from another semiconductor laser. S
chaotic electric fields emitted from semiconductor lasers
usually modulated in both amplitude and phase, it is app
priate to assume the driving field is modulated in the sa
way, such asEdrv(t)5Adrv(t)exp@ifdrv(t)#. These assump
tions yield the following set of three rate equations for t
amplitude, the phase, and the carrier number:

dA~ t !

dt
5

1

2
$g@N~ t !2N0#2gc%A~ t !1kAdrv~ t !cos@f~ t !

2fdrv~ t !#, ~6!

df~ t !

dt
5

a

2
$g@N~ t !2N0#2gc%2k

Adrv~ t !

A~ t !
sin@f~ t !

2fdrv~ t !#, ~7!

dN~ t !

dt
5

I

e
2gNN~ t !2g@N~ t !2N0#A~ t !2. ~8!

Owing to the optical driving nature, a signal drives the la
on a dc bias component of the injected field. Therefore,
viding the driving-field amplitude into time-constant an
time-varying terms, in the formAdrv(t)5Adrv,c1adrv(t),
whereAdrv,c is a constant field amplitude andadrv(t) repre-
sents a signal component, is appropriate to our analysis

A. Damping oscillation in semiconductor lasers subject
to optical injection

First, we investigate the damping oscillation properties
the laser with no signal, i.e.,adrv5fdrv50. One can notice
that this case is the same as the conventional, well-kno
optically injected semiconductor lasers with cw light inje
tion, for which a linear stability analysis has already be
fully applied @20–23#. Since our analysis follows the prev
ous works, we briefly describe it here. We assume a cons
05661
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amplitude and phase for the injected field asAdrv(t)5Adrv,c
andfdrv(t)5fdrv,c . From Eqs.~6! to ~8!, the stationary so-
lutions A(t)5Ast, f(t)5fst, andN(t)5Nst are then given
by

Ast
25

I /e2gNNst

g~Nst2N0!
, ~9!

Dfst5fst2fdrv,c52tan21 a, ~10!

Nst5N01
gc22kAstcosDfst

g
, ~11!

where we usedAdrv,c5Ast for the injected field to simplify
the analysis. Next, we consider a small perturbation writ
in the formx(t)5xst1dx exp(lt) ~x5E, f, andN!, wherel
represents a perturbation parameter and is a complex n
ber, in order to investigate the stability of the injected las
After inserting the small perturbation and the stationary c
ditions into the rate equations and linearizing the equatio
we obtain the following linearized equations for the pertu
bations in matrix for

S l1k cosDfst kAstsinDfst 2
1

2
gAst

2
k sinDfst

Ast
l1k cosDfst 2

a

2
g

2gAst~Nst2N0! 0 l1gN1gAst
2

D S dE
df
dN

D
50. ~12!

A determinant of the coefficient matrix is given by

D~l!5l31~gR12k cosDfst!l
21~vR

21k2

12kgR cosDfst!l1k2gR1kvR
2~cosDfst

2a sinDfst!, ~13!

wherevR5AggcAst
2 andgR5gN1gAst

2 are the angular fre-
quency and damping rate of relaxation oscillation for t
solitary semiconductor laser. In order to establish Eq.~12!,
the determinant has to be zero, giving a stability condit
for the injected lasers. We solve the zeros ofD by dividing l
into real and imaginary parts (l5g1 iv) and obtain a linear
mode as a pair ofg and v @24,25#. From the assumed per
turbations, the real~imaginary! part of l represents a damp
ing rate ~angular frequency! of the damping oscillation.
Therefore, a linear mode with negativeg represents damping
oscillation, while a positiveg represents unstable oscillatio
of the injected lasers. Furthermore, the bandwidth of the
jected laser can be determined by the damping oscilla
frequencyv.

Figure 3 illustrates a linear mode of the injected las
moving in a phase space of~g, v! with change of the optica
injection rater inj . Circles represent the linear modes for d
ferent values ofr inj , and the gray line represents the locus
the linear mode transition. Forr inj50%, the linear mode
corresponds to the relaxation oscillation of the solitary se
7-3
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ATSUSHI MURAKAMI PHYSICAL REVIEW E 65 056617
conductor lasers exhibiting damping oscillation with neg
tive g at a frequency of about 2.5 GHz. With increased
jection, the linear mode moves in the direction denoted
arrows. For a weak injection, the mode enters theg.0 re-
gion, explaining that the laser becomes unstable due to
optical injection itself. Actually, injected lasers in this regio
are known to exhibit bifurcation routes to chaos@26#. The
unstable mode becomes stable again forr inj54%. It should
be noted that the stable-mode regime corresponds to
injection-locking regime at strong injection level. Further i
crease of the injection increases both the damping rate
the oscillation frequency of the linear mode. The mode tr
sition explicitly exhibits a bandwidth broadening of the i

FIG. 3. Transition of linear mode of optically injected semico
ductor lasers with increased injection rater inj obtained from a linear
stability analysis. Horizontal and vertical axes represent freque
and damping rate of the linear mode. The arrows denote direct
of the mode transition. The gray curve displays locus of the m
transition.
o
an
od
tr
je
t fl
th
f
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jected laser. We find that, for a high injection rate, the
jected laser begins to have a sufficiently broad bandwidth
cover the chaotic driving signal of Fig. 2.

B. Frequency response of driven injected semiconductor lasers

Second, we analyze Eqs.~6! to ~8! including the signal
term and derive a driven response of the injected la
around the stationary state. We assume the signal term
takes the perturbation formAdrv(t)5Adrv,c1dadrv exp(lt)
and fdrv(t)5fdrv,c1dfdrv exp(lt) in the same manner a
the other variables. Inserting the signal terms with all t
other perturbed variables into Eqs.~6! to ~8! leads to the
following set of linear equations:

ldA52k cosDfstdA2kAstsinDfst$df2dfdrv%

1
1

2
gAstdN1k cosDfstdadrv , ~14!

ldf5
k sinDfst

Ast
dA2k cosDfst@df2dfdrv#1

a

2
gdN

2
k sindfst

Ast
dadrv , ~15!

ldN522gAst~Nst2N0!dA2~gN1gAst
2 !dN. ~16!

Owing to the limitation of linear stability analysis, we cann
investigate the laser-driven response simultaneously for b
the amplitude and the phase components of the driving
nal. Therefore, we derive a response to the amplitude d
and a response to the phase drive independently. We
express the driven response in the form ofdA/dadrv for
dfdrv50 anddf/dfdrv for dadrv50. Insertingl5 iv can
lead to their frequency responses. From Eqs.~14! to ~16!, we
obtain

y
ns
e

dA

dadrv
5

@gRk22k cos~Dfst!v
2#1 i @k21gRk cos~Dfst!#v

D~ iv!
, ~17!

df

dfdrv
5

$gRk21kvR
2@cos~Dfst!2a sin~Dfst!#2k cos~Dfst!v

2%1 i @k21gRk cos~Dfst!#v

D~ iv!
, ~18!
b-
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whereD is the determinant given by Eq.~13!. Figure 4 de-
picts plots of Eqs.~17! and~18! for different injection rates.
Figure 4~a! presents the spectrum of the amplitude drive
the injected laser. We find that the spectrum has a reson
peak that corresponds to the damping oscillation m
shown in Fig. 3. The figure demonstrates that the spec
bandwidth becomes much broader with the increased in
tion rate and that the spectrum structure becomes almos
with the suppression of the resonance peak. We consider
the resonance suppression is due to enhanced damping o
f
ce
e
al
c-
at
at
the

linear mode, as shown in Fig. 3. A similar tendency is o
served for the phase-drive case shown in Fig. 4~b!. A remark-
able difference is observed between the two spectra. Spe
cally the gain in the low-frequency region is reduced for t
amplitude-drive case but not in the phase-drive case. T
means that the injected laser is more likely to provide lin
response in the driving phase than in the driving amplitu
However, the analysis almost seems to predict that injec
semiconductor lasers with sufficiently high injection can e
hibit a linearlike driven response to any broadband driv
7-4
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SYNCHRONIZATION OF CHAOS DUE TO LINEAR . . . PHYSICAL REVIEW E 65 056617
signal, either amplitude or phase, if the signal bandwidth
covered within the laser bandwidth.

IV. NUMERICAL ANALYSIS

In this section, we numerically simulate the full rate equ
tions of Eqs.~1!–~3! and examine the above theoretical pr
dictions from the linear stability analysis. We use the m
ter’s chaotic state of Fig. 2 as a driving signal and investig
slave laser response for the injection ratesr inj55 and 30%,
for each of which the slave laser has an intensive resona
peak at 6 GHz in the response spectrum or has a nearly
spectrum~see Fig. 4!. Note that the values ofr inj we use here
are comparable to those of the experiment in Refs.@17#, @18#.
First, we present the result forr inj55% in Fig. 5. Figure 5~a!
depicts the time series. The solid curve illustrates the dri
response of the slave laser, and the gray line shows the
ing chaotic signal of the master laser that is vertically shif
for clear comparison. We find that the slave laser partly f
lows the driving signal but oscillates at a much higher f
quency. We can investigate the slave response in the
quency domain in Fig. 5~b!. The solid ~gray! line
corresponds to the slave~master! laser. These two spectr
overlap and are very similar to each other up to about 5 G
However, the slave laser amplifies the driving signal t
much in the higher frequency range. We consider that
excess amplification is induced by the high resonance aro
6 GHz in the spectrum of Fig. 4. Figure 6 presents the re
for an even stronger injection ofr inj530%. Figure 6~a! dem-
onstrates that the slave laser almost exactly follows the d
ing chaotic signal, realizing chaos synchronization.
shown in Fig. 6~b!, the spectra correspond to each other v
well up to about 8 GHz. It may be reasonable to consider
this synchronized chaos results from the linear respons
the injected laser with the bandwidth broadening. In t
case, the effect of the excess amplification for the hig

FIG. 4. Spectra of the injected laser showing frequency respo
to ~a! amplitude drive and~b! phase drive for different values o
r inj .
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frequency region is trivial in the synchronized behavior b
cause the signal components in the frequency region are
ficiently small themselves.

As previously shown, the numerical results reflect t
analytical predictions. Since chaotic dynamics are genera
due to laser nonlinearity, the linear stability analysis does
completely explain chaotically driving lasers. Indeed, t
gain reduction of the amplitude-driven response spectr
appearing in the lower frequency region in Fig. 4~a! is not
observed in the numerical results.~Note that the spectra o
the signal and the driven response correspond well to e
other even in the low-frequency range.! However, it is im-
portant to notice that our analysis verifies the scenario

se

FIG. 5. Numerical result of chaotic driven semiconductor las
for a weak injection.~a! Driving signal of the master SL~gray line!
and response of the slave SL~solid line!, and~b! their power spec-
tra. The driving signal is the same as shown in Fig. 2. The w
injection rate isr inj55%, and the other parameters areI m5I s

51.3I th , t51 ns, andr ext50.02%.

FIG. 6. Well-synchronized chaotic state from the driven
sponse of the slave SL for a strong injection. The injection rate
r inj530%, and the other parameter values are identical to thos
Fig. 5.
7-5
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ATSUSHI MURAKAMI PHYSICAL REVIEW E 65 056617
high optical injection can provide semiconductor las
bandwidth broadening and lead to synchronization of ch
due to the linear response. We should mention that ba
width broadening induced by strong optical injection
semiconductor lasers~SLs! is not a novel phenomenon, bu
has already been intensively studied without connection
the chaos synchronization problem@21,22#. It is also impor-
tant to note that the literature described such bandwidth
hancement of injected lasers as a cavity phenomenon
does not occur in a traveling wave amplifier.

We investigated synchronization stability against pert
bation. In the numerical calculation, we moderately devia
the electric field of the slave laser that is in the stable s
chronized state, and traced the slave’s behavior. We chos
synchronized state of Fig. 6. The result is presented in Fig
in which the gray line is the master’s driving signal and t
solid lines show the temporal response of the slave la
output after three perturbations are applied att50. We find
that the slave laser converges rapidly to the synchron
state after exhibiting a transient relaxation oscillation with
a very short time~,0.2 ns! compared to the chaotic tim
fluctuations. For this reason, we link the synchronization s
bility to the damping characteristics of the injected las
shown in Fig. 3. The linear mode analysis has estimated t
for r inj530%, the damping rate and frequency are222.0
ns21 and 13.3 GHz. The damping oscillation period co
verted in the time domain is then 0.075 ns and agrees
with the transient relaxation oscillation in the numerical
sult of Fig. 7.

We also investigated the driven response of the slave
for variations in some system parameters. In order to qu
titatively estimate the similarity between the driving sign
and the driven response, we calculate a correlation define
s5^uSm2Ssu&/^Sm& whereS represents the normalized in
tensity of the laser output and^¯& denotes the time average
First, we choose the chaotic driving signal of Fig. 2 and v
the injection rate from 5 to 100%. Figure 8~a! shows the
calculateds as a function ofr inj . The value ofs asymptoti-
cally decreases as the injection increases because the
width of the slave SL is broadened with the increased inj
tion, and the accuracy of the synchronized response of

FIG. 7. Stability of synchronization corresponding to the pre
ous result in Fig. 6. The gray line shows the chaotic driving sig
of the master SL, and solid lines illustrate time traces of the w
synchronized slave SL from three different perturbations applie
t50. The slave SL rapidly converges to the synchronized s
again after the transient relaxation oscillations.
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slave SL increases. This is consistent with the linear m
analysis of Fig. 3 and also agrees well with the experimen
result in Ref.@16#. s reaches a constant value atr inj535%.
Second, we fix the injection rate tor inj530% and vary the
feedback rate of the master SL from 0.01 to 10%. The re
is shown in Fig. 8~b! where a log scale is used for the hor
zontal axis for clarity. The figure demonstrates that the c
relation entirely tends to decrease with increasingr ext. We
consider that increasing the feedback rate can broaden
master’s bandwidth, generating a much-broadened cha
signal. We interpret this result as meaning that the bandw
of the chaotic signal becomes larger toward that of the sl
SL, decreasing the synchronization ability of the slave S

V. DISCUSSION

So far, we have concentrated on the synchronized chao
semiconductor lasers due to the linearlike response. Here
show complete synchronization generated in our configu
tion and discuss physical properties and differences for c
plete synchronization and linear-amplification-like synch
nization. The reason why we have used the feedback-indu
chaos as the driving signal is that synchronized states for
two types of synchronization differ considerably. In the co
ventional theories of complete synchronization, the two s
chronized systems have to be symmetric; all the parame
in the two systems have to be the same or equivalent@1–3#.
In this situation, the two systems may have mathematic
complete synchronous solutions. For example, in our ca
the two laser systems can be described by the same
equivalently the same, rate equation when all the laser
rameters are the same, and the feedback strength of the
ter laser is identical to the injection strength into the sla
laser, i.e.,kext5k inj . Under these conditions, there is a sy

-
l

l-
at
te

FIG. 8. Synchronization performance versus parameter va
tions with a correlations between the master’s chaotic driving sig
nal and the slave’s synchronized output.~a! The driving signal is
chosen to be Fig. 2 and the injection rate is varied.~b! The injection
rate is fixed tor inj530%, and the feedback rate is varied.
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chronous solution,Em(t)5Es(t2t) @12–15#. The existence
of a time shift between the two laser outputs is a remarka
feature in complete synchronization observed in our case
this time shift, the slave laser anticipates the future state
the master’s behavior. The anticipation is known to be a g
eral phenomenon observed in other synchronized time-d
systems@2#. The anticipating synchronization has been t
major problem and discrepancy between the theory and
experiment because there was no such time shift in the
perimental synchronization. However, we emphasize that
analysis follows the experimental results because here
no such time shift exists in amplificationlike synchroniz
tion, as already presented in Fig. 6. Figure 9 shows an
pating synchronization in our case for the driving signal
Fig. 2. In this case, the complete synchronization conditi
areI m5I s(51.3I th) andr ext5r inj(50.02%). The slave lase
synchronizes with the driving signal with a time shift corr
sponding to the feedback delay time (t51 ns) while antici-
pating the future state of the master’s chaotic behavior.
previous numerical study revealed that this synchroni
state is very unstable and is easily broken by including no
or parameter mismatches of even a few percent between
two lasers@19#. It seems difficult to observe such anticipa
ing synchronization in real laser experiments@14#.

A remarkable feature of the linear-amplification-like sy
chronization is the feasibility in asymmetric systems,
clearly demonstrated in Fig. 8~a!. Increasing the injection
rate alone with respect to the fixed feedback rate drives
slave system farther from symmetry with the master sys
because the symmetry requirement can be defined as ha
equal injection and feedback rates. In spite of that, the fig
shows that the slave laser becomes well synchronized.
consider that this explains the experimental result of R
@16#. Moreover, as was shown in our previous work~in Ref.
@19#!, the other mismatched parameters do not prevent s
chronization. Particularly, linear-amplification-like synchr
nization can be realized in the wide range of the freque
detuning. This agrees well with the experimental result
Refs.@17#, @18#.

The conventional theories suggest that the strict symm
of systems required for successful synchronization can p

FIG. 9. Anticipating synchronization in our case calculated
the symmetry conditions required by the conventional theories
complete chaos synchronization. Calculation conditions for
complete chaos synchronization areI m5I s51.3I th , t51 ns, and
r ext5r inj50.02%. The solid~gray! line corresponds to the slav
~master! SL. The slave SL oscillates and anticipates the mast
behavior by timet.
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an important role as a security key in private communi
tions using chaos synchronization because someone w
slightly mismatched receiver cannot get coded informat
due to the failure in synchronizing the chaotic carrier.
contrast, a kind of linear-amplification-like chaos synchro
zation in lasers may provide different applications, even
implementing private communications, due to the robustn
of synchronization against parameter mismatch. These
jects should be discussed in other literature.

We mention that the linear-amplification-like synchron
zation can be considered a kind of phase synchroniza
because the main physical cause comes from injection lo
ing that includes ‘‘phase-locking’’ phenomena. Indeed, go
synchronization is observed in phase fluctuations in the s
chronized state of Fig. 6. Moreover, in Fig. 5, phases are w
synchronized, even though the field amplitudes~or intensi-
ties! are not synchronized. However, the conventional pha
synchronization scheme, coupling method considerably
fers, in that the coupling between two systems is realized
taking difference of their outputs in many studies@6#. In our
configuration, only the master laser’s complex field amp
tude is unidirectionally coupled into the slave laser due
optical manner. Therefore, we consider that further disc
sion would be needed in directly classifying the linea
amplification-like synchronization into the convention
phase synchronization.

VI. CONCLUSION

We have theoretically studied chaos synchronization
coupled semiconductor lasers from the viewpoint of driv
damped oscillators, and, as a result, obtained a good ex
nation of why one can observe a linear-amplification-li
synchronized chaos in experiments. In our system, a cha
light signal generated from a semiconductor laser with o
cal feedback can drive another semiconductor laser i
master-slave configuration in which the two lasers
coupled by unidirectionally injecting the master laser outp
into the slave laser. The driven laser is always subjected
constant-intensity bias field injection in the absence of
driving signal. This bias field injection can induce a maj
change in the damping properties of the laser as a dam
oscillator.

We performed a linear stability analysis and analytica
demonstrated that increasing injection can increase the
quency and damping rate of the damping oscillation
constant-intensity-injected semiconductor lasers. This
lead to a bandwidth broadening for the injected semicond
tor laser. We also applied the analysis to the case wit
driving signal and derived a spectral characteristic of
driven laser as a function of driving frequency. The line
stability analysis predicted that a semiconductor laser w
optical injection can exhibit a linearlike driven response
broadband driving signals under strong injection; the lin
response was characterized by a nearly flat spectral s
resulting from the bandwidth broadening of the injected la
and from the suppression of the resonance peak in the s
trum by enhanced damping.

We examined these analytical results by numerica
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simulating the full set of rate equations in our system.
chose a broadband chaotic signal in a tens-of-gigahertz ra
generated from the master laser with optical feedback,
investigated the response of the driven slave laser for w
and strong optical injection. For weak injection, we co
firmed that the effective resonance of the slave laser
hances and amplifies the frequency part of the driving sig
corresponding to the resonance frequency and its neigh
hood, degrading synchronization. In contrast, strong inj
tion suppresses the resonance and provides linearlike
sponse to the driven laser. As a result, the numer
simulation explicitly showed that the slave synchroniz
well with the driving chaotic signal. Synchronization stab
ity was investigated by perturbing the synchronized sla
laser. The slave laser rapidly converges to stable synchr
zation much more quickly than the chaotic fluctuation. W
considered that the very fast response results from the
hanced damping of the strongly injected laser and agr
with the linear mode analysis. We calculated a correlation
outputs between the master and slave SLs by varying
feedback rate and injection rate, and confirmed the interr
tion of bandwidths between the driving signal and the sla
SL with respect to synchronization.

We also discussed this linear-amplification-like synch
nization with respect to the conventional theory of compl
synchronization. Our synchronizing system also possess
complete synchronous solution in a mathematical se
These two types of synchronization can be clearly dis
I.
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guished from each other by the existence or absence
time shift between the driving signal and synchroniz
chaos. The time shift always occurs in the conventio
theory of complete synchronization in synchronized tim
delay systems but does not occurs in the amplification c
We discussed differences and characteristics of both c
from the relation between synchronization and system
rameter mismatches, and emphasized the feasibility in as
metric systems as a remarkable feature of linear-respo
induced chaos synchronization. We mention that the line
amplification-like synchronization can be considered a k
of phase synchronization.

We conclude that the controversial experimental synch
nization in lasers results from the linear-like-amplificatio
with the enhanced damping and the bandwidth broaden
induced by the strong optical injection, but not from th
complete-synchronization theory. Particularly, our analy
verified to provide a good interpretation of the experimen
chaos synchronization in semiconductor lasers with opt
feedback that can be observed in the absence of the an
pating time shift and in variation of injection level within th
strong injection-locking regime.
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