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Synchronization of chaos due to linear response in optically driven semiconductor lasers
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This paper presents physical aspects on chaos synchronization in semiconductoiSlaseby studying
synchronization from a fundamental standpointdafen damped oscillatordNe investigate the simple con-
figuration, a chaotic master SL with optical feedback and a solitary slave SL. The point we emphasize is that
the slave laser is regarded as a damped oscillator with relaxation oscillation. Linear stability analysis demon-
strates that strong injection can enhance the damping of the slave SL. Consequently, the slave SL can have
broad and nearly flat spectral characteristics in its driven response, which is sufficient for covering the broad-
band chaotic driving signal from the master SL. Numerical simulations verify that the slave SL subject to such
strong injection synchronizes well with the chaotic driving signal. We consider that the synchronization phe-
nomenon results from a quasilinear driven response of the slave SL with the remarkable spectral characteris-
tics. Moreover, we discuss this type of chaos synchronization in comparison to anticipating-chaos synchroni-
zation occurring in our case from conventional complete synchronization theories, and clarify the different
physical aspects of the chaos synchronization scheme. We also show that our analysis agrees well with the
earlier experiments that could not have been explained by complete synchronization theory.

DOI: 10.1103/PhysRevE.65.056617 PACS nuni)er05.45.Xt, 42.55.Px, 42.65.Sf

[. INTRODUCTION ena caused by injection locking in lasers. Moreover, these
experimental results verify that synchronization of chaotic
Investigating nonlinear systems driven by a time-varyingoutputs in lasers can be easily obtained in asymmetric and
input has been of interest and is related to problems in a widemismatched systems, which contradicts the complete-
area of natural and science fields, from chemical, biologicalsynchronization theories requiring identical or symmetric
and physiological, to physical systems. In particular, synsystems to realize synchronization. Recently, we numerically
chronization is an attractive phenomenon in driven nonlineademonstrated chaos synchronization induced by amplifica-
systems both from a fundamental and an application point ofion at a much higher injection level than that previously
view. Recently, synchronization of nonlinear systems driverreported and revealed that the chaos synchronization results
with chaotic signals, not by periodic signals, has been a fasrom the injection-locking phenomena, which agrees well
cinating subject. Several concepts for synchronizing chaowith the experiments in some aspekt8]. However, there is
have been suggested, such as complete synchronizatiget no conclusive explanation of the physics involved,
[1-3], generalized synchronizati¢s,5], phase synchroniza- namely, how injection locking can induce such synchroniza-
tion [6], and lag synchronizatiofY], and chaos synchroniza- tion by amplification.
tion has been intensively studied in many systems. In par- In this paper, we reconsider the problem from a funda-
ticular, lasers have been of great interest due to theimental standpoint far from the conventional chaos synchro-
potential applications to optical secure communications imization theories. Since general lasers can be regarded as
which information is conveyed by a chaotic carri8r11]. damped nonlinear oscillators exhibiting damping oscillation,
Synchronization of chaotic oscillations in lasers can bealso called “relaxation oscillation,” that is a result of an
easily realized using a simple configuration, consisting of dnteraction between the complex electric field and the popu-
chaotic master laser and a solitary slave laser coupled bkation inversion in the laser cavity. Therefore, we can deal
injecting the master laser output into the slave laser. Thevith a case of injecting a master’s chaotic output into a soli-
configuration has been numerically studied in several lasetary slave laser as a fundamental problem afriVing
systems, and the synchronized chaos has been well discussggimped oscillators
from the standpoint of the conventional complete- A remarkable feature of driving damped oscillators is
synchronization theory12—15. The experiment in such a resonance If a damped oscillator is driven by a periodic
configuration was performed in microchip laséd$] and signal very close to the oscillator damping frequency, the
semiconductor lasergl7,18, and good synchronization in oscillator will begin to oscillate at the same frequency as the
laser outputs was observed. However, the earlier numericalriving signal but with large amplitude. In contrast, if the
studies could not explain the observed chaos synchronizatiadriving frequency is far from the damping frequency, the
very well. There exist some problems in the experimentafesponse of the oscillator becomes much smaller compared
synchronization, as followgi) increasing injection strength to the case of resonance. Thus, the oscillator resonance
realizes much more accurate synchronizafib@l; (i) syn- causes a kind of filtering effect. We then consider driving
chronized chaotic oscillation can be observed even in thelamped oscillators with chaotic signal in the same manner.
presence of large frequency detuning between the two laseBecause of the broad bandwidth of chaotic signals, the reso-
[17,18. All the authors conclude that the experimentally ob-nance may force damped oscillators to respond by enhancing
served synchronization results from amplification phenomspecific frequency components of a chaotic signal. However,
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FIG. 1. Configuration of synchronizing coupled semiconductor
lasers(SLs). The master SL receives optical feedback from an ex-
ternal reflector and emits feedback-induced chaotic light. The slave Time [ns]
SL is driven by unidirectionally injecting the master’s chaotic light 0;(b)
into the slave’s active layer via an optical isolatt®). 20F

Output power [mW]

= _
S

we can also consider that a damped oscillator could synchro?;“‘o;'
nize with the chaotic driving signal, if the oscillator could Z ¢k
respond linearly to the chaotic drive. “Linear response” i
means that the damped oscillator has a broad bandwidth the -39
sufficiently covers the bandwidth of the chaotic driving sig- _jgobosiie v v 1 o L RS R
nal, has a response even faster than the chaotic time varie Frequency [GHz]
tions, and has an identical gain over the dominant frequency
range in the chaotic signal. Such linear-response-induced FIG. 2. Typical feedback-induced chaos generated from the
chaos synchronization may differ considerably from com-master SL.(a) Time series andb) power spectrum of the master
plete synchronization theories. output for the parameters of,=1.3y,, 7=1nS, 1= 0.02%.

In this paper, we choose semiconductor lasers and analyti- ) o
cally investigate rate equations by performing a linear stabilWWhereE andN are the slowly varying complex electric field
ity analysis in order to study chaos synchronization in lasers2MPplitude and carrier number in the laser cavity, respec-
In particular, we reveal important physical aspects behind!VelY; @nd the subscripts ands represent master and slave
synchronization of chaotic oscillations in lasers by taking the@Sers- Note that the master and slave lasers are assumed to
standpoint of driven damped oscillators and verify that ou€Mit at the same optical frequency, namely, no frequency
analysis can provide a better interpretation of the earlier exdetuning exists between the two lasers. The laser internal
periments. parameters are as follows:=3 is the linewidth enhance-
ment factor,g=7.0x10 % ns! is the linear gain coeffi-
cient, y.=518.9ns! is the cavity decay rate,yy
=0.490 ns ! is the spontaneous carrier decay ratés the

We consider chaotically driving semiconductor lasers inpump currentg is the electron charge, amdy=1.68x< 10° is
the simple master-slave configuration depicted in Fig. 1the carrier number at transpareneyis the round-trip delay
which is basically the same as the configuration used in théime within the external cavity. Feedback coefficient; is
earlier experimentfl6—18. The master laser has an exter- given by 1 (1—rg)Vrex/Io Where 7, is the round-trip
nal reflector and exhibits feedback-induced chaotic instabilitime in the laser cavity, and, andr,; represent intensity
ties. We note that using feedback-induced chaos as a drivingflectivity of the laser exit facet and the external reflector
signal is very useful for distinguishing the linear-response{r,=0.3). The coupling strength between the two systems
induced synchronizatiofwe call this “linear-amplification-  can be given by an injection coefficiert, expressed as
like synchronization” in the following from the complete 1/Tin(1_r0)\/rianO in which r;; represents the injection
synchronization, discussed later. In order to drive the slaveate of the master output intensity injected into the slave
laser, the master chaotic output is unidirectionally injectedaser cavity.
into the active layer of the slave laser via an optical isolator \We show a typical feedback-induced chaos generated
(IS). Fundamental dynamics, instability, and synchronizatiorfrom the master laser in Fig. 2. It results from numerically
in the coupled semiconductor lasers can be described by th&ilculating Eqs(1) and (3) for variable parameters of the

Intensit

Il. MODEL AND RATE EQUATIONS

following set of rate equationg2—-15,19: injection currentl,=1.3,, the feedback delay timer
dE(1) 1 =1ns, and the feedback ratg,=0.02% (kex=3.2 NS 1)
mY_ = ; _ _ by using a fourth-order Runge-Kutta algorithm. These fig-
=>(1+ Nip(t) =N Enm(t RN : _
dt 2( | G[Nm(t)=Nol = 7eEn(V) ures presenta) the chaotic time series an@) its power

spectrum. The feedback-induced chaos has a dominant fre-
qguency in the gigahertz range corresponding to the relaxation
oscillation frequency. Nonlinear mixing between the relax-

+ KexEm(t—1), (1)

dEs(t) = l(l+ia){g[Ns(t)_NO]_'yc}Es(t)+KinjEm(t)a ation os_cillation frequency and the external round—trip_ fre-
dt 2 quency induced by the external feedback causes a variety of
2 irregularities. The spectrum has a maximum peak around the

relaxation oscillation frequency and exhibits broadband char-

dNp,s(t) :IL'S_ N «(t) =9[N «(t) = NoJ| Emn o(D)]2 acteristics exceeding 10 GHz. We inject this chaotic light
dt e INTms 9L Nm.s 01=m,sitl into the slave laser in order to realize a chaotic drive. As

3 described in the preceding section, the slave laser must suf-
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ficiently cover the bandwidth of the chaotic signal to obtain aamplitude and phase for the injected fieldAg(t) =Agpy ¢
linear driven response and the resultant synchronization. l8nd ¢y, (t) = ¢qn . From Egs.(6) to (8), the stationary so-

the following section, we perform a linear stability analysismtions,/_\(t):,/_\st, (1) = pg, andN(t) =N are then given
for rate equations and analytically investigate the bandwidttpy

of optically driven semiconductor lasers.

2 | /e_ 'yNNst
=N (€)
IIl. LINEAR STABILITY ANALYSIS St g(Ng— Np)
We start by presenting rate equations for optically driven Ado= o — _tan ! 10
semiconductor lasers as a model of the slave laser, Pst= Pst™ Darvc “ (19
— 2KkAgCOSA
dE(D) ) 1 Ng=No+ Ve st d’st’ (11)

—i = 5 (L @{gIN() = Nol ~ Y E() + kEan(D),

(4) where we usedhy, .=Ag for the injected field to simplify
AN(E) I the analysis. Next, we consider a small perturbation written
———=——yN(1)—g[N(t) = NoJ|E(1)|?, (5) in the formx(t) =X+ ox expAt) (x=E, ¢, andN), wherex
dt ¢ represents a perturbation parameter and is a complex num-
L . , . ber, in order to investigate the stability of the injected laser.
whereEr, represents the driving optical field amplitude and After inserting the small perturbation and the stationary con-

?Tgs thebsar;e';or(;n. Of"‘l" In II'th.d(4), tr(]je cr?mplfx electric ditions into the rate equations and linearizing the equations,
nield can be divided Into ampfitude and phase 1erms assuMye opiain the following linearized equations for the pertur-
ing E(t)=A(t)exdi¢(t)]. Here, the driving fieldEy,, is as- bations in matrix for

sumed to be emitted from another semiconductor laser. Since

chaotic electric fields emitted from semiconductor lasers are

. 1
usually modulated in both amplitude and phase, it is appro{ A+ COSAdg  kAgSINA b —59Ax
priate to assume the driving field is modulated in the sam _ oE
way, such asE g (t) =Agn(t)exfidg(t)]. These assump- Kk SINA gy N+ K COSA & a o
tions yield the following set of three rate equations for the| — A K st 29 SN
amplitude, the phase, and the carrier number:
P P 29Ag(Ng— No) 0 N+ -+ gAZ
dA(t) 1 _
—gr = 5 {9IN(D) ~ Nol = 7cJA(t) + rAgu(t)cod (1) -0 12
A determinant of the coefficient matrix is given by
- ¢drv(t)]: (6)
D(N)=N3+ (yr+ 2k COSA pe) N2+ (w3 + K2
dd’(t) _«a Adrv(t) .
T = E{g[N(t) - No] - 'yc}_ K A(t) Slr{ ¢(t) + 2K’yR COSA(ﬁSt))\ + K2’)/R+ Kwé(COSA ¢St
~ banlD)], v ~asinAdg), (13
dN(t) | wherewg= \/gyCASZt and yg= yN+gA§t are the angular fre-
9t e yaN(t) = g[N(t) — NgJA(t)2. (8) quency and damping rate of relaxation oscillation for the

solitary semiconductor laser. In order to establish 8@),

Owing to the optical driving nature, a signal drives the lasefn® déterminant has to be zero, giving a stability condition

on a dc bias component of the injected field. Therefore, difo" the injected lasers. We solve the zeroDaby dividing A

viding the driving-field amplitude into time-constant and !Nt real and imaginary parts.¢ y+io) and obtain a linear
time-varying terms, in the formAgn(t)=Agw c+agn(t), mode_as a pair ofy_ and_w [24,25. From the assumed per-
whereAy,, ¢ is a constant field amplitude arag(t) repre- f[urbatlons, the regimaginary part of represents a da_mp-
sents a signal component, is appropriate to our analysis. ing rate (ang_ular frequendy of the. damping oscnlatpn.
Therefore, a linear mode with negatiyeepresents damping

oscillation, while a positivey represents unstable oscillation
of the injected lasers. Furthermore, the bandwidth of the in-
jected laser can be determined by the damping oscillation
First, we investigate the damping oscillation properties offrequencyw.

the laser with no signal, i.eay,= ¢4,=0. One can notice Figure 3 illustrates a linear mode of the injected laser
that this case is the same as the conventional, well-knowmoving in a phase space 6f, w) with change of the optical
optically injected semiconductor lasers with cw light injec- injection rater;, . Circles represent the linear modes for dif-
tion, for which a linear stability analysis has already beerferent values of;,;, and the gray line represents the locus of
fully applied[20-23. Since our analysis follows the previ- the linear mode transition. Far,;=0%, the linear mode
ous works, we briefly describe it here. We assume a constagbrresponds to the relaxation oscillation of the solitary semi-

A. Damping oscillation in semiconductor lasers subject
to optical injection
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107 5 jected laser. We find that, for a high injection rate, the in-
S | jected laser begins to have a sufficiently broad bandwidth to
P T, (S SO TSR NS cover the chaotic driving signal of Fig. 2.
0% AN 0
_10? ' o, } B. Frequency response of driven injected semiconductor lasers
— ! ‘if\qzo Second, we analyze Eqg&) to (8) including the signal
=) ERUU USRS S-S RO SR term and derive a driven response of the injected laser
= 0 around the stationary state. We assume the signal term also
[ N takes the perturbation formf\y.(t)=Agyc+ dagn expit)
-0 : oo and ¢an(t) = dan.c+ Sdbgn€XPAL) in the same manner as
. o, the other variables. Inserting the signal terms with all the
-40f e T : eﬁf’ other perturbed variables into Eq&) to (8) leads to the
i ‘ X100 following set of linear equations:
[ | o
ST 10 1520 25 NSA= — k COSA 0A — kAGSINA def S — Sban}

a¥2r {GHz]

1
FIG. 3. Transition of linear mode of optically injected semicon- + EgA‘StﬁN + k COSA dsdar ., (14)

ductor lasers with increased injection rajg obtained from a linear
stability analysis. Horizontal and vertical axes represent frequency Kk SINA g a
and damping rate of the linear mode. The arrows denote directions A §¢= 6A— Kk COSA ¢ps{ Sp— Spgn] + EgéN

of the mode transition. The gray curve displays locus of the mode Ast
transition. K SiN Sy

S . —_ . — ——— Ay, 15
conductor lasers exhibiting damping oscillation with nega- Ay drv (15

tive y at a frequency of about 2.5 GHz. With increased in-

jection, the linear mode moves in the direction denoted by AON=—2gAy(Ng—Ng) SA— (yn+gAZ)SN.  (16)
arrows. For a weak injection, the mode enters 40 re-

gion, explaining that the laser becomes unstable due to th®wing to the limitation of linear stability analysis, we cannot
optical injection itself. Actually, injected lasers in this region investigate the laser-driven response simultaneously for both
are known to exhibit bifurcation routes to cha@6]. The the amplitude and the phase components of the driving sig-
unstable mode becomes stable againrfge=49%. It should nal. Therefore, we derive a response to the amplitude drive
be noted that the stable-mode regime corresponds to thend a response to the phase drive independently. We thus
injection-locking regime at strong injection level. Further in- express the driven response in the form &4/ day, for
crease of the injection increases both the damping rate anfkpy,,=0 and 8¢/ ¢y, for day,=0. Inserting\=iw can

the oscillation frequency of the linear mode. The mode tranlead to their frequency responses. From Eg4d) to (16), we
sition explicitly exhibits a bandwidth broadening of the in- obtain

SA B [yRKZ— KCO&(Ad)Sr)a)Z]-I-i[Kz-G- YrK COS A ¢bg) |
dagy D(iw) ’

17

8¢ {yre’+ KwF COSA dg) — a SIN(A ) | — k COL A pg) %} +i[ K%+ yri COLA by |
5¢drv_ D(iw) ,

(18

whereD is the determinant given by E@13). Figure 4 de- linear mode, as shown in Fig. 3. A similar tendency is ob-
picts plots of Eqs(17) and(18) for different injection rates. served for the phase-drive case shown in Fig).ZA remark-
Figure 4a) presents the spectrum of the amplitude drive ofable difference is observed between the two spectra. Specifi-
the injected laser. We find that the spectrum has a resonancally the gain in the low-frequency region is reduced for the
peak that corresponds to the damping oscillation modamplitude-drive case but not in the phase-drive case. This
shown in Fig. 3. The figure demonstrates that the spectraheans that the injected laser is more likely to provide linear
bandwidth becomes much broader with the increased injeaesponse in the driving phase than in the driving amplitude.
tion rate and that the spectrum structure becomes almost flatowever, the analysis almost seems to predict that injected
with the suppression of the resonance peak. We consider thaemiconductor lasers with sufficiently high injection can ex-
the resonance suppression is due to enhanced damping of thibit a linearlike driven response to any broadband driving
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w/2m {GHz] FIG. 5. Numerical result of chaotic driven semiconductor lasers

for a weak injection(a) Driving signal of the master Sigray line

FIG. 4. Spectra of the injected laser showing frequency responsgnd response of the slave $iolid line), and(b) their power spec-
to (a) amplitude drive andb) phase drive for different values of {3 The driving signal is the same as shown in Fig. 2. The weak
Finj - injection rate isri;=5%, and the other parameters drg=I

=13y, 7=1ns, and .= 0.02%.

signal, either amplitude or phase, if the signal bandwidth is
covered within the laser bandwidth. frequency region is trivial in the synchronized behavior be-
cause the signal components in the frequency region are suf-
ficiently small themselves.

As previously shown, the numerical results reflect the

In this section, we numerically simulate the full rate equa-analytical predictions. Since chaotic dynamics are generated
tions of Egs.(1)—(3) and examine the above theoretical pre-due to laser nonlinearity, the linear stability analysis does not
dictions from the linear stability analysis. We use the mascompletely explain chaotically driving lasers. Indeed, the
ter’s chaotic state of Fig. 2 as a driving signal and investigat@ain reduction of the amplitude-driven response spectrum
slave laser response for the injection ratgs=5 and 30%, appearing in the lower frequency region in Figayis not
for each of which the slave laser has an intensive resonané@served in the numerical result®lote that the spectra of
peak at 6 GHz in the response spectrum or has a nearly fl#t€ signal and the driven response correspond well to each
spectrun(see Fig. 4. Note that the values of,; we use here ~other even in the low-frequency rangélowever, it is im-
are comparable to those of the experiment in R@fg}, [18]. portant to notice that our analysis verifies the scenario that
First, we present the result fog,;=5% in Fig. 5. Figure &)
depicts the time series. The solid curve illustrates the driven—
response of the slave laser, and the gray line shows the drivz
ing chaotic signal of the master laser that is vertically shifted 5
for clear comparison. We find that the slave laser partly fol-
lows the driving signal but oscillates at a much higher fre-
guency. We can investigate the slave response in the fre
quency domain in Fig. ®). The solid (gray) line
corresponds to the slavenastey laser. These two spectra
overlap and are very similar to each other up to about 5 GHz.
However, the slave laser amplifies the driving signal too &~
much in the higher frequency range. We consider that the3 of : i
excess amplification is induced by the high resonance aroun | IR IR
6 GHz in the spectrum of Fig. 4. Figure 6 presents the resultg ™ ' 1 L
for an even stronger injection of,;=30%. Figure €a) dem- = 80
onstrates that the slave laser almost exactly follows the driv- n
ing chaotic signal, realizing chaos synchronization. As 100 4 8 v 12 16

. . Frequency [GHz]

shown in Fig. b), the spectra correspond to each other very
well up to about 8 GHz. It may be reasonable to consider that F|G. 6. Well-synchronized chaotic state from the driven re-
this synchronized chaos results from the linear response @&jponse of the slave SL for a strong injection. The injection rate is
the injected laser with the bandwidth broadening. In thisr;;=30%, and the other parameter values are identical to those in
case, the effect of the excess amplification for the higheFig. 5.

IV. NUMERICAL ANALYSIS

Output pow
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FIG. 7. Stability of synchronization corresponding to the previ-  30f ! A
ous result in Fig. 6. The gray line shows the chaotic driving signal® [ {\ ﬂ n [\N\ l\/\/\‘ \/\/\/M v
of the master SL, and solid lines illustrate time traces of the well- © 20f 1 Ao \ Hf 1
synchronized slave SL from three different perturbations applied at ! /\ J\ /HVV‘U V
t=0. The slave SL rapidly converges to the synchronized state low VAR
again after the transient relaxation oscillations. E 1

0.01 0.1 1 10
r %]
ext

high optical injection can provide semiconductor lasers

bandwidth broadening and lead to synchronization of chaos FIG. 8. Synchronization performance versus parameter varia-
due to the linear response. We should mention that bandions with a correlatiorr between the master’s chaotic driving sig-
width broadening induced by strong optical injection in nal and the slave’s synchronized outp(# The driving signal is
semiconductor laserSLs) is not a novel phenomenon, but chosgn .to be Fig. 2 and the injection rate is var(b.aj.'l'he.injection

has already been intensively studied without connection téte is fixed tori;=30%, and the feedback rate is varied.

the chaos synchronization probld2i,22. It is also impor-

tant to note that the literature described such bandwidth erslave SL increases. This is consistent with the linear mode
hancement of injected lasers as a cavity phenomenon thapalysis of Fig. 3 and also agrees well with the experimental
does not occur in a traveling wave amplifier. result in Ref.[16]. o reaches a constant valuergf=35%.

We investigated synchronization stability against pertur-Second, we fix the injection rate tq,=30% and vary the
bation. In the numerical calculation, we moderately deviatedeedback rate of the master SL from 0.01 to 10%. The result
the electric field of the slave laser that is in the stable synis shown in Fig. 8) where a log scale is used for the hori-
chronized state, and traced the slave’s behavior. We chose tA@ntal axis for clarity. The figure demonstrates that the cor-
synchronized state of Fig. 6. The result is presented in Fig. 7€elation entirely tends to decrease with increasipg. We
in which the gray line is the master’s driving signal and theconsider that increasing the feedback rate can broaden the
solid lines show the temporal response of the slave lasghaster’'s bandwidth, generating a much-broadened chaotic
output after three perturbations are applied-aD. We find  signal. We interpret this result as meaning that the bandwidth
that the slave laser converges rapidly to the synchronize€f the chaotic signal becomes larger toward that of the slave
state after exhibiting a transient relaxation oscillation withinSL, decreasing the synchronization ability of the slave SL.

a very short time(<0.2 ng compared to the chaotic time
fluctuations. For this reason, we link the synchronization sta-
bility to the damping characteristics of the injected laser
shown in Fig. 3. The linear mode analysis has estimated that, So far, we have concentrated on the synchronized chaos in
for ri,;=30%, the damping rate and frequency ar@2.0  semiconductor lasers due to the linearlike response. Here, we
ns ! and 13.3 GHz. The damping oscillation period con-show complete synchronization generated in our configura-
verted in the time domain is then 0.075 ns and agrees wetion and discuss physical properties and differences for com-
with the transient relaxation oscillation in the numerical re-plete synchronization and linear-amplification-like synchro-
sult of Fig. 7. nization. The reason why we have used the feedback-induced

We also investigated the driven response of the slave Sthaos as the driving signal is that synchronized states for the
for variations in some system parameters. In order to quarntwo types of synchronization differ considerably. In the con-
titatively estimate the similarity between the driving signal ventional theories of complete synchronization, the two syn-
and the driven response, we calculate a correlation defined abronized systems have to be symmetric; all the parameters
o={|Sn—S|)/(Sn) whereS represents the normalized in- in the two systems have to be the same or equiv4len8].
tensity of the laser output are -) denotes the time average. In this situation, the two systems may have mathematically
First, we choose the chaotic driving signal of Fig. 2 and varycomplete synchronous solutions. For example, in our case,
the injection rate from 5 to 100%. Figurda® shows the the two laser systems can be described by the same, or
calculatedo as a function of ;. The value ofo asymptoti-  equivalently the same, rate equation when all the laser pa-
cally decreases as the injection increases because the bamdmeters are the same, and the feedback strength of the mas-
width of the slave SL is broadened with the increased injecter laser is identical to the injection strength into the slave
tion, and the accuracy of the synchronized response of thiaser, i.e.keq= kinj - Under these conditions, there is a syn-

V. DISCUSSION
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an important role as a security key in private communica-
tions using chaos synchronization because someone with a
slightly mismatched receiver cannot get coded information
due to the failure in synchronizing the chaotic carrier. In
contrast, a kind of linear-amplification-like chaos synchroni-
zation in lasers may provide different applications, even in
implementing private communications, due to the robustness
of synchronization against parameter mismatch. These sub-
jects should be discussed in other literature.
Time [ns] We mention that the linear-amplification-like synchroni-
FIG. 9. Anticipating synchronization in our case calculated forzatlon can be c_on5|der_ed a kind of phase sy_n(_:hrqnlzatlon
. I . . ; pecause the main physical cause comes from injection lock-
the symmetry conditions required by the conventional theories for . “ S
complete chaos synchronization. Calculation conditions for the"9 that mcludes_ phase-lock_lng phenomena: '”d?eo'* good
complete chaos synchronization drg=1.=1.3,, 7=1ns, and synch_romzaﬂon is o_bserved in phase fIl_Jctuatlons in the syn-
Fex=Tinj=0.02%. The solid(gray) line corresponds to the slave chronlzed_ state of Fig. 6. Moreove_r, in Fig. 5 phases are well
(mastey SL. The slave SL oscillates and anticipates the mastersynchronized, even though the field amplitudes intensi-
behavior by timer. ties) are not synchronized. However, the conventional phase-
synchronization scheme, coupling method considerably dif-

chronous solutionE (t) = E4(t—7) [12—15. The existence ferg, in t_hat the coupling between two systems is realized in
of a time shift between the two laser outputs is a remarkabl&King difference of their outputs in many stud[€s. In our
feature in complete synchronization observed in our case. Igonfiguration, only the master laser's complex field ampli-
this time shift, the slave laser anticipates the future state oi'de iS unidirectionally coupled into the slave laser due to
the master’s behavior. The anticipation is known to be a genPtical manner. Therefore, we consider that further discus-
eral phenomenon observed in other synchronized time-dela§ion Wwould be needed in directly classifying the linear-
systemg2]. The anticipating synchronization has been theamphﬁcaﬂon-hkg synchromzaﬂon into the conventional
major problem and discrepancy between the theory and thehase synchronization.
experiment because there was no such time shift in the ex-
perimental synchronization. However, we emphasize that our
analysis follows the experimental results because here also
no such time shift exists in amplificationlike synchroniza- We have theoretically studied chaos synchronization in
tion, as already presented in Fig. 6. Figure 9 shows anticieoupled semiconductor lasers from the viewpoint of driven
pating synchronization in our case for the driving signal ofdamped oscillators, and, as a result, obtained a good expla-
Fig. 2. In this case, the complete synchronization conditiongation of why one can observe a linear-amplification-like
arel n=14(=1.3ly) andre=rin(=0.02%). The slave laser synchronized chaos in experiments. In our system, a chaotic
synchronizes with the driving signal with a time shift corre- light signal generated from a semiconductor laser with opti-
sponding to the feedback delay time=f1 ns) while antici- cal feedback can drive another semiconductor laser in a
pating the future state of the master’s chaotic behavior. Oumaster-slave configuration in which the two lasers are
previous numerical study revealed that this synchronizedoupled by unidirectionally injecting the master laser output
state is very unstable and is easily broken by including noiséto the slave laser. The driven laser is always subjected to a
or parameter mismatches of even a few percent between tlwonstant-intensity bias field injection in the absence of the
two laserg[19]. It seems difficult to observe such anticipat- driving signal. This bias field injection can induce a major
ing synchronization in real laser experimeptd]. change in the damping properties of the laser as a damped
A remarkable feature of the linear-amplification-like syn- oscillator.
chronization is the feasibility in asymmetric systems, as We performed a linear stability analysis and analytically
clearly demonstrated in Fig.(&. Increasing the injection demonstrated that increasing injection can increase the fre-
rate alone with respect to the fixed feedback rate drives thquency and damping rate of the damping oscillation in
slave system farther from symmetry with the master systengconstant-intensity-injected semiconductor lasers. This can
because the symmetry requirement can be defined as havitgad to a bandwidth broadening for the injected semiconduc-
equal injection and feedback rates. In spite of that, the figuréor laser. We also applied the analysis to the case with a
shows that the slave laser becomes well synchronized. Weriving signal and derived a spectral characteristic of the
consider that this explains the experimental result of Refdriven laser as a function of driving frequency. The linear
[16]. Moreover, as was shown in our previous wéirk Ref.  stability analysis predicted that a semiconductor laser with
[19]), the other mismatched parameters do not prevent syreptical injection can exhibit a linearlike driven response to
chronization. Particularly, linear-amplification-like synchro- broadband driving signals under strong injection; the linear
nization can be realized in the wide range of the frequencyesponse was characterized by a nearly flat spectral shape
detuning. This agrees well with the experimental result ofresulting from the bandwidth broadening of the injected laser
Refs.[17], [18]. and from the suppression of the resonance peak in the spec-
The conventional theories suggest that the strict symmetryrum by enhanced damping.
of systems required for successful synchronization can play We examined these analytical results by numerically

Output power [mW]
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simulating the full set of rate equations in our system. Weguished from each other by the existence or absence of a
chose a broadband chaotic signal in a tens-of-gigahertz rangine shift between the driving signal and synchronized
generated from the master laser with optical feedback, anghaos. The time shift always occurs in the conventional
investigated the response of the driven slave laser for weaheory of complete synchronization in synchronized time-
and strong optical injection. For weak injection, we con-delay systems but does not occurs in the amplification case.
firmed that the effective resonance of the slave laser enge discussed differences and characteristics of both cases
hances and amplifies the frequency part of the driving signarom the relation between synchronization and system pa-
corresponding to the resonance frequency and its neighbofameter mismatches, and emphasized the feasibility in asym-
hood, degrading synchronization. In contrast, strong injeCmetric systems as a remarkable feature of linear-response-
tion suppresses the resonance and provides linearlike rgqduced chaos synchronization. We mention that the linear-
sponse to the driven laser. As a result, the numericaymplification-like synchronization can be considered a kind
simulation explicitly showed that the slave synchronizedgf phase synchronization.

We” W|th the driVing ChaotiC Signal. Synchronization Stabil' We conclude that the controversial experimenta| Synchro_
ity was investigated by perturbing the synchronized slavejzation in lasers results from the linear-like-amplification
laser. The slave laser rapidly converges to stable synchronigith the enhanced damping and the bandwidth broadening
zation much more quickly than the chaotic fluctuation. Wejnduced by the strong optical injection, but not from the
considered that the very fast response results from the erpmplete-synchronization theory. Particularly, our analysis
hanced damping of the strongly injected laser and agreegerified to provide a good interpretation of the experimental
with the linear mode analysis. We calculated a correlation 0thaos synchronization in semiconductor lasers with optical
outputs between the master and slave SLs by varying thgsedback that can be observed in the absence of the antici-

feedback rate and injection rate, and confirmed the interrelgsating time shift and in variation of injection level within the
tion of bandwidths between the driving signal and the slavestrong injection-locking regime.

SL with respect to synchronization.
We also discussed this linear-amplification-like synchro-
nization with respect to the conventional theory of complete ACKNOWLEDGMENT
synchronization. Our synchronizing system also possesses a
complete synchronous solution in a mathematical sense. Valuable support by Professor K. Atsuki in conducting the
These two types of synchronization can be clearly distininvestigations is gratefully acknowledged.
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